Publications
原著論文
-
Takeda Y, Chinen T*, Honda S, Takatori S, Okuda S, Yamamoto S, Fukuyama M, Takeuchi K, Tomita T, Hata S* and Kitagawa D*. (2024)
-
Molecular basis promoting centriole triplet microtubule assembly
-
Nature Communications, DOI: 10.1038/s41467-024-46454-x (*corresponding authors)
(Press release: https://www.u-tokyo.ac.jp/content/400235656.pdf)
-
Ito K*., Tsuruoka Y*. and Kitagawa D*. (2024)
-
Predicting potential target genes in molecular biology experiments using machine learning and multifaceted data sources
-
iScience, DOI: 10.1016/j.isci.2024.109309 (*corresponding authors)
-
#Harada T., #Hata S*., Takagi R., Komori T., Fukuyama M., Chinen T.and Kitagawa D*. (2023)
-
An antioxidant screen identifies ascorbic acid for prevention of light-induced mitotic prolongation in live cell imaging
-
Communications Biology, DOI: 10.1038/s42003-023-05479-6 (*corresponding authors, # co-first authors)
-
#Mabuchi A., #Hata S*., Genova M., Tei C., Ito K., Hirota M., Komori T., Fukuyama M., Chinen T., Toyoda A. and Kitagawa D*. (2023)
-
ssDNA is not superior to dsDNA as long HDR donors for CRISPR-mediated endogenous gene tagging in human diploid RPE1 and HCT116 cells
-
BMC Genomics, DOI: 10.1186/s12864-023-09377-3 (*corresponding authors, # co-first authors)
-
#Komori T., #Hata S*., Mabuchi A., Genova M., Harada T., Fukuyama M., Chinen T. and Kitagawa D*. (2023)
-
A CRISPR-del-based pipeline for complete gene knockout in human diploid cells
-
Journal of Cell Science, DOI: 10.1242/jcs.260000 (*corresponding authors, # co-first authors)
-
Tanaka A., Nakano T., Watanabe K., Masuda K., Honda G., Kamata S., Yasui R., Kozuka-Hata H., Watanabe C., Chinen T., Kitagawa D., Sawai S., Oyama M., Yanagisawa M. and Kunieda T*. (2022)
-
Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel
-
PLOS Biology, DOI: 10.1371/journal.pbio.3001780 (*corresponding authors)
-
Yamamoto S., Yabuki R. and Kitagawa D*. (2021)
-
Biophysical and biochemical properties of Deup1 self-assemblies: a potential driver for deuterosome formation during multiciliogenesis
-
Biology Open, DOI: 10.1242/bio.056432 (*corresponding authors)
-
#Ito K., #Watanabe K., Ishida H., Matsuhashi K., Chinen T., Hata S. and Kitagawa D*. (2021)
-
Cep57 and Cep57L1 maintain centriole engagement in interphase to ensure centriole duplication cycle
-
Journal of Cell Biology, DOI: 10.1083/jcb.202005153 (*corresponding authors, # co-first authors)
-
#Chinen T*., #Yamazaki K., Hashimoto K., Fujii K., Watanabe K., Takeda Y., Yamamoto S., Nozaki Y., Tsuchiya Y., Takao D. and Kitagawa D*. (2021)
-
Centriole and PCM cooperatively recruit CEP192 to spindle poles to promote bipolar spindle assembly
-
Journal of Cell Biology, DOI: 10.1083/jcb.202006085 (*corresponding authors, # co-first authors)
-
Takeda Y., Yamazaki K. Hashimoto K. Watanabe K. Chinen T*. and Kitagawa D*. (2020)
-
The centriole protein CEP76 negatively regulates PLK1 activity in the cytoplasm for proper mitotic progression
-
Journal of Cell Science, DOI: 10.1242/jcs.241281 (*corresponding authors)
-
Chinen T., Yamamoto S. Takeda Y. Watanabe K. Kuroki K. Hashimoto K. Takao D. and Kitagawa D*. (2020)
-
NuMA assemblies organize microtubule asters to establish spindle bipolarity in acentrosomal human cells.
-
The EMBO Journal, DOI: 10.15252/embj.2019102378 (*corresponding authors)
-
Takao D*., Watanabe K., Kuroki K. and Kitagawa D*. (2019)
-
Feedback loops in the Plk4–STIL–HsSAS6 network coordinate site selection for procentriole formation.
-
Biology Open, DOI: 10.1242/bio.047175 (*corresponding authors)
-
Takao D*., Yamamoto S. and Kitagawa D*. (2019)
-
A Theory of Centriole Duplication Based on Self-Organized Spatial Pattern Formation.
-
Journal of cell biology, DOI: 10.1083/jcb.201904156 (*corresponding authors)
-
Yoshiba S., Tsuchiya Y., Ohta M., Gupta A., Shiratsuchi G., Nozaki Y., Ashikawa T., Fujiwara T., Natsume T., Kanemaki M. and Kitagawa D*. (2019)
-
HsSAS-6-dependent cartwheel assembly ensures stabilization of centriole intermediates.
-
Journal of cell science, doi: 10.1242/jcs.217521 (*corresponding authors)
-
Yamamoto S. and Kitagawa D*. (2019)
-
Self-organization of Plk4 regulates symmetry breaking in centriole duplication.
-
Nature Communications, doi: 10.1038/s41467-019-09847-x (*corresponding authors)
- 詳細はこちら(日本語要旨)
-
Watanabe K., Takao D., Ito K., Takahashi M. and Kitagawa D*. (2019)
-
The Cep57-pericentrin module organizes PCM expansion and centriole engagement.
-
Nature Communications, doi: 10.1038/s41467-019-08862-2. (*corresponding authors)
- 詳細はこちら(日本語要旨)
-
Ohta M., Watanabe K., Ashikawa T., Nozaki Y., Yoshiba S., Kimura A. and Kitagawa D*. (2018)
-
Bimodal Binding of STIL to Plk4 Controls Proper Centriole Copy Number.
-
Cell Reports, 23, 3160-3169, doi: 10.1016/j.celrep.2018.05.030. (*corresponding authors)
-
#Okamoto N*., #Tsuchiya Y., Miya F., Tsunoda T., Yamashita K., Boroevich KA., Kato M., Saitoh S., Yamasaki M., Kanemura Y., Kosaki K. and Kitagawa D.* (2017)
-
A novel genetic syndrome with STARD9 mutation and abnormal spindle morphology.
-
Am J Med Genet A, doi: 10.1002/ajmg.a.38391. (*corresponding authors, # co-first authors)
-
Gupta A., Tsuchiya Y., Ohta M., Shiratsuchi G. and Kitagawa D*. (2017)
-
NEK7 is required for G1 progression and procentriole formation.
-
Molecular Biology of the Cell, 28, 2123-2134. (*corresponding authors)
-
#Okamoto N*., #Tsuchiya Y., Kuki I., Yamamoto T., Saitsu H., Kitagawa D.* and Matsumoto N.* (2017)
-
Disturbed chromosome segregation and multipolar spindle formation in a patient with CHAMP1 mutation.
-
Molecular Genetics and Genomic Medicine, 5, 585-591 (*corresponding authors, # co-first authors)
-
Jin M., Pomp O., Shinoda T., Toba S., Torisawa T., Furuta K., Oiwa K., Yasunaga T., Kitagawa D., Matsumura S., Miyata T., Tan T.T., Reversade B*. and Hirotsune S*. (2017)
-
Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics.
-
Scientific Reports, 12, 739902. doi: 10.1038/srep39902. (*corresponding authors)
-
Tsuchiya Y., Yoshiba S., Gupta A., Watanabe K. and Kitagawa D*. (2016)
-
Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole.
-
Nature Communications, doi: 10.1038/ncomms12567 (*corresponding authors)
-
Matsuura R., Ashikawa T., Nozaki Y. and Kitagawa D*. (2016)
-
LIN-41 inactivation leads to delayed centrosome elimination and abnormal chromosome behavior during female meiosis in Caenorhabditis elegans.
-
Molecular Biology of the Cell, 27, 799-811 (*corresponding authors)
-
Zitouni S*., Francia M.E*., Leal F., Montenegro Gouveia S., Nabais C., Duarte P., Gilberto S., Brito D., Moyer T., Kandels-Lewis S., Ohta M., Kitagawa D., Holland A.J., Karsenti E., Lorca T., Lince-Faria M. and Bettencourt-Dias M*. (2016)
-
CDK1 prevents unscheduled PLK4-STIL complex assembly in centriole biogenesis.
-
Current Biology, 26, 1127-37 (*corresponding authors)
-
Shiratsuchi G., Takaoka K., Ashikawa T., Hamada H. and Kitagawa D*. (2015)
-
RBM14 prevents assembly of centriolar protein complexes and maintains spindle integrity.
-
EMBO J., 34, 97-114 (*corresponding authors)
-
Shiratsuchi G. and Kitagawa D*. (2015)
-
Suppression of the ectopic assembly of centriole proteins ensures mitotic spindle integrity.
-
Molecular and Cellular Oncology, DOI: 10.1080/23723556.2014.1002717 (*corresponding authors)
-
Ohta M., Ashikawa T., Nozaki Y., Kozuka-Hata H., Goto H., Inagaki M., Oyama M. and Kitagawa D*. (2014)
-
Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole.
-
Nature Communications, DOI: 10.1038/ncomms6267 (Open access) (*corresponding authors)
-
Kitagawa D., Kohlmaier G., Keller D., Strnad P., Balestra F.R., Flückiger I. and Gönczy P*. (2011)
-
Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL.
-
J. Cell Sci., 124, 3884-3893 (*corresponding authors)
-
Kitagawa D., Vakonakis I., Olieric N., Hilbert M., Keller D., Olieric V., Bortfeld M., Erat M.C., Flückiger I., Gönczy P*. and Steinmetz M.O. (2011)
-
Structural basis of the 9-fold symmetry of centrioles.
-
Cell, 144, 364-375 (*corresponding authors)
-
Kitagawa D., Flückiger I., Polanowska J., Keller D., Reboul J. and Gönczy P*. (2011)
-
PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos.
-
Developmental Cell, 20, 550-562 (*corresponding authors)
-
Kitagawa D., Busso C., Flückiger I. and Gönczy P*. (2009)
-
Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos.
-
Developmental Cell, 17, 900-907 (*corresponding authors)
-
(You can find other papers in Pubmed)
総説
-
伊藤慶, 鶴岡慶雅, 北川大樹 (2022)
-
任意のヒト遺伝子に関わる生命科学実験の検索・提案ウェブツール「LEXAS」
-
実験医学, vol. 41, No.1, 102-108
-
新倉竜太, 知念拓実 (2022)
-
CRISPRスクリーニングデータベースを活用した創薬標的探索
-
生物工学会誌, 第100巻, 第8号, 449. 2022; DOI: 10.34565/seibutsukogaku.100.8_449
-
竹田穣, 知念拓実, 北川大樹 (2022)
-
中心体タンパク質による分裂期PLK1制御を介した適切な細胞分裂保証メカニズム
-
生化学, 6月号掲載, vol.94, No.3 2022, 419-422
-
Takumi K. and Kitagawa D. (2022)
-
Experimental and Natural Induction of de novo Centriole Formation
-
Frontiers in Cell and Developmental Biology, DOI: 10.3389/fcell.2022.861864
-
北川大樹 (2022)
-
中心体
-
遺伝学の百科事典・継承と多様性の源, 日本遺伝学会編, p178-179
-
馬渕陽, 畠星治, 北川大樹 (2021)
-
相分離を介した中心体の制御機構
-
実験医学増刊, vol.39, No.10, 110-115
-
Yamamoto S. and Kitagawa D. (2020)
-
Emerging insights into symmetry breaking in centriole duplication: updated view on centriole duplication theory
-
Current Opinion in Structural Biology 2021, 66:8–14, doi:10.1016/j.sbi.2020.08.005
-
松橋恭平, 北川大樹 (2020)
-
中心体の構造と細胞分裂
-
生体の科学, 2020 7月号掲載, vol. 71 No.4 338-342
-
Takeda Y., Kuroki K., Chinen T. and Kitagawa D. (2020)
-
Centrosomal and Non-centrosomal Functions Emerged through Eliminating Centrosomes
-
CELL STRUCTURE AND FUNCTION 45: 57–64 (2020), doi:10.1247/csf.20007
-
Hashimoto K., Chinen T. and Kitagawa D. (2020)
-
Mechanisms of spindle bipolarity establishment in acentrosomal human cells
-
MOLECULAR & CELLULAR ONCOLOGY 2020, VOL. 7, NO. 3, e1743899, doi:10.1080/23723556.2020.1743899
-
Ito K., Watanabe K., and Kitagawa D., (2020)
-
The Emerging Role of ncRNAs and RNA-Binding Proteins in Mitotic
Apparatus Formation
-
Non-Coding RNA 2020, 6(1), 13; doi:10.3390/ncrna6010013
-
竹田穣, 知念拓実, 北川大樹 (2019)
-
分裂期紡錘体形成を阻害する抗がん薬開発の動向
-
ファルマシア, 10月号掲載, Vol.55 No.10 2019. 954-958
-
Gupta A. and Kitagawa D. (2018)
-
Ultrastructural diversity between centrioles of eukaryotes.
-
Journal of Biochemistry, 164, 1-8, doi: 10.1093/jb/mvy031.
-
北川大樹 (2017)
-
進化的に保存された中心体の複製と成熟過程の分子機構
-
生化学, 8月号掲載, vol. 89, No.4, 489-497
-
北川大樹 (2013)
-
中心小体構築と複製の分子メカニズム
-
細胞工学, vol. 32, No.3, 285-290
-
北川大樹 (2012)
-
中心小体複製の分子機構
-
生化学, 2月号掲載
-
北川大樹 (2011)
-
中心小体再構成のスナップショット
-
細胞工学, vol. 30, No.11, 1127
-
北川大樹, Michel O. Steinmetz, and Pierre Gönczy (2011)
-
中心小体複製開始の分子メカニズム
-
実験医学, vol. 29, No.11, 1777-1780
-
北川大樹, Michel O. Steinmetz, and Pierre Gönczy (2011)
-
進化上保存された中心小体の9回対称構造の謎を解く
-
細胞工学, vol. 30, No.5, 534-5